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The flow of ice sheets and glaciers dissipates significant amounts of heat, which can
result in the formation of ‘temperate ice’, a binary mixture of ice and small amounts
of melt water that exists at the melting point. Many ice masses are polythermal, in
the sense that they contain cold ice, below the melting point, as well as temperate ice.
Temperature and melt water (or moisture) content conversely affect the flow of these
ice masses through their effect on ice viscosity and sliding behaviour. Ice flow models
therefore require a component that can solve for temperature and moisture content,
and determine the free boundary between the cold and temperate subdomains. We
present such a model, based on the theory of compacting partial melts. By contrast
with other models, we describe gravity- and pressure-gradient-driven drainage of
moisture, while maintaining a divergence-free ice flow at leading order. We also
derive the relevant boundary conditions at the free cold–temperate boundary, and
find that the boundary behaves differently depending on whether ice enters or exits
the temperate region. The paper also describes a number of test cases used to
compare with a numerical solution, and investigates asymptotic solutions applicable
to the limit of small compaction pressure gradients in the temperate ice regions. A
simplified enthalpy-gradient model is finally proposed, which captures most of the
behaviour of the full model in this limit.
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1. Introduction

The dynamics of ice sheets and glaciers depend sensitively on their thermal
structure. Many ice masses are polythermal, containing both cold ice, with temperature
below the melting point, and temperate ice, with temperature at the melting point.
The temperate ‘ice’ is really an ice–water mixture, with water being produced at grain
boundaries by dissipative heating. Although the water content is typically small, it
can have an important effect. As well as altering the thermodynamics, water content
controls ice viscosity and hence deformation, and internal melting and percolation
affect mass balance and hydrology.
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This paper concerns the theory required to model an ice mass’s polythermal
structure. The essential demands of such a theory are to determine the temperature
of the cold ice and the water content of the temperate ice, and at the same time
to determine which regions are in fact cold and which temperate. In this sense, the
problem is a free-boundary problem. Various models already exist, but our focus here
will be specifically on the treatment of the temperate ice, which is different from
existing models. In particular, we explicitly model the drainage of water driven by
gravity and pressure gradients. Our aim is for a model that consistently describes this
process, but that is nevertheless simple enough to be incorporated in operational ice
sheet simulations.

Extensive discussions on the theory for polythermal ice are provided by Fowler
& Larson (1978), Hutter (1982) and Fowler (1984). At the most basic level, the
fundamental ingredient is energy conservation, which manifests itself as an equation
for temperature in the cold ice and an equation for porosity, i.e. moisture content, in
the temperate ice. The theories differ primarily in their treatment of moisture transport
(and associated latent heat transport), and in their treatment of cold–temperate
boundaries.

The simplest assumption to make is that moisture is simply advected with the
ice. Alternatively, moisture transport relative to the ice can be described either
with a diffusive flux proportional to the gradient of porosity, or with a Darcy flux
proportional to the permeability and potential gradient. Most current models adopt
the diffusive flux (Aschwanden & Blatter 2009; Aschwanden et al. 2012), which is
typically assumed to be small. Because this approach does not allow for drainage
under gravity, it tends to cause a build-up of moisture, so that large porosities
(greater than 1 %, say) can occur. Some form of cap on the porosity and instantaneous
drainage to the bed is often adopted to deal with this (e.g. Greve 1997b; Aschwanden
et al. 2012), but a more realistic description of how gravity-driven drainage removes
moisture from the ice is desirable.

Here we present a model for polythermal ice built on the theory for the viscous
compaction of partially molten polycrystalline solids, similar to models used for
viscous compaction in the partially molten mantle (Turcotte & Ahern 1978; McKenzie
1984). The model accounts for conservation of energy throughout the ice mass by
tracking changes in specific and latent heat content in the ice mass, solving the
standard heat equation in the ‘cold’ parts of the domain and a coupled model for
melt water drainage and viscous compaction (which determines the water pressures
that partially drive the flow of melt through the porous ice matrix) in the temperate
part of the domain.

The main advantage of our model over existing approaches used in ice sheet
simulations is that we are able to incorporate gravity- and pressure-gradient-driven
drainage of melt water in the temperate regions in a self-consistent way as determined
by Darcy’s law, while also determining the location for the cold–temperate boundary
as a free boundary in a way that accounts for phase changes that occur there.

In practice, the application of polythermal models is often intricately tied up
with the numerical method used to solve the problem. Early numerical calculations
(Blatter & Hutter 1991; Greve 1997a) solved equations for the cold and temperate ice
separately, applying jump conditions to calculate explicitly where the cold–temperate
transition should occur. More recently, the favoured approach has been to solve an
equation for the energy throughout the whole domain, and then to infer from that
what the temperature and moisture content are. Provided an appropriate numerical
scheme is used, the free-boundary location should be automatic. This approach is
commonly referred to as an enthalpy method. It is used in other multiphase problems
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such as alloy solidification and magma dynamics, and its use in glaciology in the
form of an enthalpy-gradient method (where moisture flux is diffusive) is described
by Aschwanden & Blatter (2009) and more extensively by Aschwanden et al. (2012).
In this paper, we show how this existing framework can be extended to describe
gravity- and pressure-gradient-driven moisture transport, without having to assume
that moisture flux is diffusive.

We test an enthalpy-based finite volume method for the full, time-dependent
version of our polythermal ice model against a direct solution of one-dimensional
steady states by a multiple shooting method. By showing close agreement between
the two, we establish our finite volume discretization as a computationally viable
method. In addition, we use these solutions to investigate the generic behaviour of
the model. We focus on competing mechanisms for melt water transport through
advection, gravity-driven drainage and drainage caused by englacial water pressure
gradients, and on the difference between cold–temperate boundaries at which ice
flows into and out of the temperate domain. Thirdly, we compare these numerical
solutions against an asymptotic solution in the limit of small compaction pressure
gradients, where transport of moisture is dominated by advection and gravity-driven
drainage. Lastly, we use this asymptotic solution to motivate a simple modification
of existing enthalpy gradient models that can emulate the behaviour of our more
complete model in the relevant small pressure-gradient limit.

The layout of this paper is as follows. We begin in § 2 with the basic theory.
After summarizing the standard equations for cold ice, we describe the equivalent
expressions for mass and energy conservation within temperate ice. Darcy’s law and
the concept of the compaction pressure are introduced, as well as the jump conditions
to apply at cold–temperate boundaries. The model is then non-dimensionalized and
approximated to arrive at a reduced model. The approximations amount to ignoring
the density change upon melting and freezing, and ignoring the effect of internal
melting on ice mass balance. Both of these approximations are effectively implicit in
existing models, and they allow us to retain the incompressibility constraint for the
temperate ice. The reduced model is summarized in § 2.5.

In § 3 we discuss the different boundary conditions that apply. These are somewhat
delicate, depending on whether the ice near the boundary is cold or temperate, and on
the direction of ice flow. Next, we formulate a one-dimensional steady version of the
model complete with the relevant boundary conditions in § 4. Numerically computed
results are presented in § 5 and we conclude with a discussion in § 6, where we also
present an enhanced enthalpy-gradient model that accounts for gravity-driven drainage.
Many of the technical aspects of our work are relegated to the appendices, where we
sketch our numerical methods and some of the technical aspects associated with the
asymptotic solution, a basic version of which is stated in § 4. Extensive additional
detail on numerical and asymptotic methods can be found in the supplementary
material available at http://dx.doi.org/10.1017/jfm.2016.251.

2. Model
2.1. Cold ice

The standard model to describe ice sheet flow is that of an incompressible power-law
viscous fluid, governed by equations of mass and force balance,

∇ · u, (2.1)
∂τij

∂xj
− ∂p
∂xi
=−ρgi, (2.2)

http://dx.doi.org/10.1017/jfm.2016.251
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with constitutive law

τij = A−1/nD1/n−1Dij, Dij = 1
2

(
∂ui

∂uj
+ ∂uj

∂xi

)
, D=√DijDij/2, (2.3a−c)

where repeated indices are summed over. Here, u= (u1, u2, u3) is the velocity vector,
Dij is the strain rate tensor, D is its second invariant, τij is the deviatoric stress tensor,
p is the pressure, ρ is the density of ice and g= (g1, g2, g3) is the acceleration due
to gravity. A and n are coefficients in the flow law. Temperature enters the problem
because the coefficient A depends strongly on temperature, usually with an assumed
Arrhenius dependence. Thus, the model is coupled to an energy equation,

ρc
(
∂T
∂t
+ u · ∇T

)
−∇ · (K∇T)= a, (2.4)

a= τijDij, (2.5)

in which c is the specific heat capacity, K is the thermal conductivity and a is the
viscous dissipation.

2.2. Temperate ice
When ice reaches the melting point Tm, there are three potentially important changes
required to this model. Firstly, the temperate ice is porous, and with a non-zero
porosity φ (volume fraction), the flow-law coefficient may depend on porosity as
well as temperature A = A(T, φ) (Duval 1977; Lliboutry & Duval 1985). Secondly,
the energy balance must be altered to account for the latent heat required to melt
or refreeze the interstitial water (and hence determine the evolution of the porosity).
Thirdly, the porous ice matrix may be permeable, and the ability for water to drain
means that the ice–water mixture is no longer necessarily incompressible.

To address these changes, we consider the general mixture form of the mass,
momentum and energy conservation equations for permeable temperate ice, broadly
working by analogy with models for melt extraction from the Earth’s mantle (e.g.
Hewitt & Fowler 2008). The ice is assumed to have porosity φ, and we denote
the internal melting rate (the rate of mass conversion from ice to water) by m. In
terms of the average pore-water velocity uw we also define the relative moisture flux
(or Darcy transport velocity)

j≡ φ(uw − u), (2.6)

where u is still the velocity of the ice; j is commonly referred to as the ‘diffusive’
moisture flux, but we refrain from that terminology here since it is not (in our
formulation) strictly diffusive. Conservation of ice and water mass are then expressed
as

∂(1− φ)
∂t

+∇ · [(1− φ)u] =−m
ρ
, (2.7)

∂φ

∂t
+∇ · [φu+ j] = m

ρw
, (2.8)

where ρw is the density of water, and combining these gives an expression for overall
mass conservation,

∇ · u=−∇ · j− ρw − ρ
ρwρ

m. (2.9)
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This expression holds in cold ice too, where j = 0 and m = 0 so it reduces to the
incompressibility constraint (2.1).

Accounting for the latent heat of melting L, the overall energy balance is expressed
as

mL+ [ρc(1− φ)+ ρwcwφ]
∂T
∂t

+ [ρc(1− φ)u+ ρwcw(φu+ j)
]
· ∇T −∇ · (K∇T)= a, (2.10)

where cw is the specific heat capacity of the water and the viscous dissipation a should
strictly include additional terms due to the energy dissipated by the relative water flow,
although these can be shown to be small so are ignored (see e.g. Fowler 1984). Again,
this equation reduces to (2.4) in cold ice, where m, φ and j are all zero. For the
temperate ice, since the temperature is by definition constrained to be at the melting
point Tm, this equation serves to determine the melting rate m and hence the source
terms in (2.8) and (2.9). In particular, if Tm is taken as constant, we simply have

m= a/L. (2.11)

If the effect of pressure and impurities on the melting point are accounted for, these
lead to corrections to this relationship.

In order to solve (2.8), the volume flux of interstitial water must be specified. We
adopt Darcy’s law with permeability k0φ

α to write

j= k0φ
α (ρwg−∇pw) , (2.12)

where k0 and α are positive constants. In our analysis later, we assume that α>2; such
values can be justified from the small porosity limit of a Carman–Kozeny relationship,
with the precise choice of α depending on the partitioning of water between veins
(triple junctions at crystal boundaries) and nodes at which such veins meet (Nye &
Frank 1973).

Although it is tempting to assume that the pore pressure is equal to the ice pressure,
pw= p, this is too restrictive an assumption. Instead we follow the theory of viscously
compacting media (McKenzie 1984) and define the compaction pressure (or effective
pressure; Terzaghi 1923; Biot 1941), pe, according to the relationship

pe ≡ p− pw (2.13)

and relate it to the compaction rate according to

pe =−∇ · u
ζ

, (2.14)

where ζ = η/φ is the bulk viscosity and η= (1/2)A−1/nD1/n−1 is the effective viscosity.
This relationship is equivalent to the statement

∂φ

∂t
+ u · ∇φ = m

ρ
− (1− φ)φ

η
pe, (2.15)

which expresses pore-scale mass conservation on the assumption that creep closure of
the pores occurs at a rate proportional to the pressure difference pe divided by the
effective viscosity (cf. the standard equations for melt opening and creep closure of
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a Röthlisberger channel or a borehole (Nye 1953; Fowler 1984)). Although pe is the
analogue of the ‘effective pressure’ N, commonly used to describe subglacial drainage
conditions, we adopt the notation pe so as to avoid any confusion (i.e. N is reserved
for use at the ice sheet or glacier bed, whereas pe is defined within the ice).

At the microscopic scales relevant to compaction, surface energy effects may also
become relevant (e.g. Bercovici, Ricard & Schubert 2001). At triple grain junctions
(where connected liquid veins are likely to exist), surface tension will reduce the
compaction rate for a given compaction pressure. A somewhat more general version
of (2.14)–(2.15) would be

pe − ps(φ)=−∇ · u
ζ

,
∂φ

∂t
+ u · ∇φ = m

ρ
− (1− φ)φ

η

[
pe − ps(φ)

]
, (2.16a,b)

where the term ps(φ) is a curvature- and hence porosity-dependent stress that serves in
this case to reduce compaction rates; it is analogous to the term σdα/dφ in Bercovici,
Ricard & Schubert (2001). In part motivated by the fact that there is no obvious
constitutive relation for ps, beyond the requirement that ps should decrease with φ (and
presumably be positive), we persist with our original, simpler equations (2.14)–(2.15).
However, we recognize that the reduced model we develop below could be generalized
to retain ps, and that this may become necessary: in practice, ps should scale as σ/R,
where σ is surface free energy and R is the radius of curvature, and will become
comparable to pe when R ∼ σ/pe ∼ 5 × 10−5 m for σ = 3 × 10−2 J m−2 and
pe ∼ 2 × 103 Pa as estimated below. Such radii of curvature are not impossible at
triple grain boundaries, especially where porosities are small (see e.g. Nye & Mae
1973).

Using (2.14) to eliminate pw, Darcy’s law (2.12) becomes

j= k0φ
α ((ρw − ρ)g+∇pe +∇pr) . (2.17)

Here we have substituted ∇p = ρg + ∇pr, thereby defining the reduced (i.e. non-
hydrostatic) ice pressure pr.

Allowing for compaction of the ice matrix strictly speaking not only changes
the divergence-free nature of the velocity field, but also the form of the remaining
Stokes equations (2.2)–(2.3). The standard definition of the deviatoric stress requires
a vanishing trace τii, and we additionally have to account for the stress supported by
pore water. Conforming with these requirements, we put

∂

∂xj
[(1− φ)τij] − ∂

∂xi
[(1− φ)p+ φpw] =−(1− φ)ρgi − φρwgi, (2.18)

τij = AD1/n−1
(
Dij − 1

3 Dkkδij
)
, (2.19)

where A = A(T, φ). Note that in the limit of φ = 0, we have Dkk ≡ ∇ · u = 0, and
(2.18)–(2.19) again reduce to their incompressible cold-ice versions, (2.2)–(2.3).

2.3. Cold–temperate boundaries
At any boundary between cold and temperate ice it is necessary to apply jump
conditions to ensure that mass, momentum and energy are conserved. These conditions
are derived by balancing the fluxes and stresses at the boundary. In addition, we
assume that the ice velocity must be continuous, since there would otherwise be
non-integrable stress singularities (just as temperature must be continuous or there
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would be a heat flux singularity). Denoting the normal to the boundary by n and its
migration velocity by v (the tangential component of v is defined to be the same as
that of the ice velocity u), and denoting the temperate side of the boundary by + and
the cold side by −, the conditions are expressed as

u+ = u−, T+ = T− = Tm, (2.20a,b)

[ρ(1− φ)(u− v)]+ · n+ [ρwφ(u− v)+ ρw j]+ · n= [ρ(u− v)]− · n, (2.21)
[(1− φ)τijnj − (1− φ)pδij − φpwδij]+nj = (τij − pδij)

−nj, (2.22)[
ρwLφ(u− v)+ ρwLj−K∇T

]+
· n=−K∇T− · n. (2.23)

The last condition is a Stefan condition: the flow of latent heat into the boundary from
within the temperate subdomain gives rise to a potential discontinuity in conductive
heat flux across it.

2.4. Non-dimensionalization and approximation
A complete model for the temperate ice is given by (2.8)–(2.10), (2.15)–(2.17),
together with (2.18)–(2.19). For cold ice, (2.1)–(2.4) replace these equations (in fact,
the temperate ice model reduces to (2.1)–(2.4) at zero porosity), while the conditions
(2.20)–(2.23) apply at any cold–temperate boundary.

We now make two particular approximations that provide a simpler but still
comprehensive model for the temperate ice. In making these approximations it is
helpful to non-dimensionalize the model, but before losing the dimensions, we
highlight the approximations to be made. The first is a Boussinesq approximation;
that is, the density difference will be ignored except in the buoyancy term ((ρw − ρ)
in (2.17)). Secondly, we will assume that the relative moisture flux is significantly
less than the ice flux, so that the porosities remain small and the ice matrix is
still approximately incompressible, ∇ · u ≈ 0 in (2.9). In addition, we will assume
below that Tm is constant. Although this restriction could easily be relaxed to include
pressure dependence, it helps to clarify the discussion.

To non-dimensionalize the variables, we write

x= [x]x∗, u= [u]u∗, t= ([x]/[u])t∗, a= [a]a∗, (2.24a−d)

T = Tref + [T]T∗, φ = εφ∗, j= [ j]j∗, pe = [pe]p∗e, pr = [pr]p∗r ,
(2.25a−e)

where Tref is a reference temperature included mostly for future convenience for efforts
to try to generalize the model to a pressure-dependent melting point; otherwise, we
can simply set Tref = Tm. We choose natural scales for the temperature, porosity, the
compaction pressure and the reduced pressure as

[T] = [a][x]
2

K
, ε= ρc[T]

ρwL
, [ j] = [a][x]

ρwL
, [pe] = [η][a]

ερwL
, [pr] = [η][u][x] ,

(2.26a−e)

where [η] is a typical value for the effective viscosity ([η] = (1/2)A−1/n([u]/[x])1/n−1),
and values for the typical dissipation rate [a] and for [u] and [x] are assumed to be
given by the geometry, driving stresses and sliding behaviour relevant to the ice flow
at hand.
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ρ 916 kg m−3 [x] 100 m r 0.9
c 2009 J kg−1 K−1 [u] 1 m y−1 ε 0.01
K 2.1 W m−1 K−1 [t] 100 y Pe 2.8
L 3.34× 105 J kg−1 [η] 1.7× 1013 Pa s κ 1.4
ρw 1000 kg m−3 [a] 3.5× 10−4 J m−3 s−1 δ 0.02
g 9.8 m2 s−1 [T] 1.7 K
n 3 [ j] 0.003 m y−1

A 2.4× 10−24 s Pa−3 [pe] 2.0× 103 Pa
α 2.33 [φ] 0.01
k0 1× 10−7 m2 Pa−1 s−1

TABLE 1. Typical values of parameters and scales for the variables. [φ] = ε is a ‘scale’
for the porosities, which are by definition dimensionless. There is considerable uncertainty
over the permeability constants k0 and α, and consequently κ .

As an example, we estimate values for these scalings in table 1, using a typical
driving stress of approximately 105 Pa and strain rate [D]≈0.1 m y−1 to infer order-of-
magnitude estimates of the dissipation rate [a] and viscosity [η] = (1/2)A−1/n[D]1/n−1.
A vertical length scale of 100 m and velocity scale of 1 m y−1 are used in anticipation
of our one-dimensional test cases in § 4.

The resulting dimensionless parameters are

r= ρ

ρw
, ε= ρc[T]

ρwL
, Pe = ρc[u][x]

K
, κ = k0ε

α(ρw − ρ)g
[ j] , δ = [pe]

(ρw − ρ)g[x] ,
(2.27a−e)

which represent the density ratio, the porosity scale (also in this case an inverse Stefan
number), the Péclet number (the ratio of advection to conduction), a permeability
parameter κ (a dimensionless measure of both permeability and gravity) and a
compaction parameter δ, which measures how much compaction pressure gradients
contribute to relative moisture flux.

We drop the asterisk decorations immediately with the understanding that all
variables are dimensionless. The scaled versions of force balance (2.18) and
constitutive law (2.19) (recall that we can reduce these to (2.2)–(2.3) in the cold
domain by setting φ =Dkk = 0) are

∂

∂xj
[(1− εφ)τij] + ε

Pe
∂

∂xi
(φpe)− ∂pr

∂xi
= ε

Pe δ
φgi, (2.28)

τij = A(T, φ)D1/n−1
(
Dij − 1

3 Dkkδij
)
, (2.29)

where A is now dimensionless.
In the cold ice domain, mass balance and conservation of energy are

∇ · u= 0, (2.30)

Pe
(
∂T
∂t
+ u · ∇T

)
−∇2T = a. (2.31)

In the temperate domain,

∇ · u=− ε

Pe
∇ · j− ε(1− r)

rPe
a, (2.32)
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Pe
(
∂φ

∂t
+ u · ∇φ + φ∇ · u

)
+∇ · j= a, (2.33)

∇ · j= φpe

η
− 1− r

rPe
a, (2.34)

j= κφα (g+ δ∇pe + Pe δ∇pr) , (2.35)

η= (1/2)AD1/n−1 being a dimensionless viscosity. These represent respectively, overall
mass conservation, moisture conservation, the compaction relation and Darcy’s law.
The non-dimensional gravity is g= (0, 0,−1), assuming the axes are oriented with the
z-direction pointing vertically upwards. The jump conditions at the boundaries between
cold (−) and temperate (+) domains become

j+ · n=−(1− r)Pe [φ(u− v)]+ · n, (2.36)[
(1− εφ)τij + ε

Pe
φpeδij − prδij

]+
nj = (τij − pδij)

−nj, (2.37)

rPe [φ(u− v)]+ · n=−∇T− · n, (2.38)

with u and T still continuous, so T = Tm. The first of these jump conditions indicates
that if a finite quantity of water is carried into the boundary (and therefore freezes
there and expands), mass conservation requires that there must be a compensating
moisture flux away from the boundary. The second is a statement of force balance
while the third is the Stefan condition, which relates freezing at the boundary to the
rate of heat transfer away from it.

To complete our approximation, we now take the limits ε→ 0, and r→ 1. ε� 1
corresponds to the assumption of a low moisture content, which ensures that the flow
of the ice matrix remains divergence free. This follows from (2.32), assuming Pe does
not simultaneously go to zero; so treating the ice as incompressible in this way makes
sense provided the ice moves predominantly due to background flow of the ice sheet,
rather than through compaction alone (the latter would be an unusual circumstance).
Setting r� 1 implies that the effects of contraction and expansion upon melting and
freezing are ignored in so far as they induce moisture movement. The effect of the
density difference causing pore water to drain under gravity is still included in (2.35);
this is the Boussinesq approximation.

The limit of small δ is also appropriate, as table 1 indicates that ε and δ are
typically of similar size. We choose to retain the term δ∇pe in the definition of j
for now, as it leads to the formation of boundary layers, as discussed in § 4 and
appendix D. These boundary layers involve large gradients in pe, but not gradients
in pr, as the latter is prescribed from the ice flow solution. We can therefore
legitimately omit the term Pe δ∇pr in (2.35), provided the Péclet number is not
too large. Specifically, we shall assume that 1� Pe δ � ε, which allows us also to
omit the right-hand side of (2.28).

2.5. Summary
Here we summarize the reduced model. At leading order the equations for ice flow,
to be solved in both cold and temperate domains, are

∇ · u= 0, (2.39)
∂τij

∂xj
− ∂pr

∂xi
= 0, (2.40)



A model for polythermal ice 513

τij = 2ηDij, η= 1
2

A(T, φ)−1/nD1/n−1, Dij = 1
2

(
∂ui

∂uj
+ ∂uj

∂xi

)
, D=√DijDij/2.

(2.41a−d)

The energy equation for cold ice is

Pe
(
∂T
∂t
+ u · ∇T

)
−∇2T = a, φ = 0, T 6 Tm, (2.42a−c)

where a= τijDij and the equivalent equations for temperate ice are

Pe
(
∂φ

∂t
+ u · ∇φ

)
+∇ · j= a, T = Tm, φ > 0, (2.43a−c)

∇ · j= φpe

η
, (2.44)

j= κφα (g+ δ∇pe) . (2.45)

The conditions to apply at the cold–temperate boundaries are

j+ · n= 0, (2.46)
Pe [φ(u− v)]+ · n=−∇T− · n, (2.47)

T− = Tm. (2.48)

Note that the temperature and porosity equations in the cold and temperate regions can
be combined as an enthalpy equation in the usual way. The dimensionless enthalpy is
defined as h= T + φ, and conversely temperature and porosity are derived from this
as

T = h, φ = 0, if h< Tm,
T = Tm, φ = h− Tm, if h > Tm.

}
(2.49)

Then (2.42) and (2.43) are equivalent to

Pe
(
∂h
∂t
+ u · ∇h

)
+∇ ·Q= a, Q=

{
−∇T, h< Tm,

j, h > Tm.
(2.50a,b)

Enthalpy is transported by advection and conduction in the cold ice and by advection
and moisture transport in the temperate ice. The Stefan condition (2.47) is the natural
jump condition that arises from treating this equation in weak form (e.g. Ockendon
et al. 2003, § 2.5).

3. Boundary and jump conditions
Boundary conditions at the exterior boundaries and the interior cold–temperate

transitions require careful consideration, and they have understandably attracted much
attention and debate in the literature (Fowler & Larson 1978; Hutter 1982; Fowler
1984; Aschwanden et al. 2012).

Under the approximation ε→ 0, we have retained incompressibility throughout the
domain, so that the ice flow problem (2.39)–(2.41) is solved everywhere. Any coupling
of the ice velocity u to the thermal problem occurs through the flow-law parameter
A, or through the boundary conditions (for instance, if the basal friction law depends
on temperature). This ice flow problem requires boundary conditions on the stress or
velocity components at all exterior boundaries, but since these are quite standard we
do not discuss them further. Instead, we concentrate on the conditions to be applied
to the temperature and moisture problems.
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3.1. Interior boundaries
The interior boundaries between cold and temperate regions are free boundaries,
whose position must be determined as part of the problem. Their location is
determined from the condition T = Tm, along with the jump condition (2.47). The
manner in which these conditions operate depends upon the direction of ice flow
relative to the boundary.

In particular, since T 6 Tm in the cold region and n is defined to point into the
temperate region, we always have ∇T− ·n> 0, and (2.47) therefore implies that φ(u−
v)+ · n 6 0. If ice flows from a cold to a temperate region, so (u − v) · n > 0 (we
refer to this an ‘inflow’ boundary), then this is only possible if φ+= 0. Consequently
(2.47) implies that in fact ∇T− · n= 0. Thus, at any inflow boundary, (2.47) actually
requires φ=∇T ·n= 0. The condition φ= 0 seems intuitive, meaning that ice entering
the temperate region starts with no water content. From the perspective of the heat
transport problem on the cold side, the boundary is both at the melting temperature
T = Tm and has zero diffusive heat flux −∇T · n across it.

These two conditions are equivalent to the conditions applied for a parabolic
obstacle problem, with T 6 Tm defining the obstacle; this is the approach to defining
the cold–temperate boundary implicit in the models of Zwinger et al. (2007) and
Suckale et al. (2014). With these boundary conditions, the temperature problem
decouples from the physics of the temperate region Ω+.

However, at an outflow boundary (where (u− v) ·n6 0), unlike an inflow boundary,
the boundary conditions on temperature do not decouple from those on the temperate
ice side. There can be a discontinuity in φ, and the jump condition (2.47) relates this
discontinuity to the jump in temperature gradient, in the usual manner of a Stefan
condition. This reflects the fact that freezing can occur at an outflow boundary. From
the point of view of determining the location of the boundary, the porosity in the
temperate region needs to be solved for primarily because it features in this condition.
The obstacle problem formulation mentioned above is only appropriate when there are
no outflow boundaries.

The jump condition for mass conservation (2.46) provides the necessary boundary
condition for the moisture transport problem (2.44)–(2.45) which, for a given
instantaneous porosity field φ, constitutes an elliptic (Helmholtz-like) problem for
pe, explicitly

∇ ·
[
κφα (g+ δ∇pe)

]− φpe

η
= 0. (3.1)

The equivalent conditions for this problem when the temperate domain extends to the
exterior boundary will be discussed below. However, it is worth pointing out that the
elliptic nature of this problem means that the divergence term ∇ · j in (2.43) acts as a
non-local function of the porosity field. The remaining hyperbolic part of that equation
suggests that a boundary condition is only required for φ on the ‘inflow’ parts of the
boundary, which is precisely where the above discussion around (2.47) revealed that
φ = 0.

3.2. Exterior boundaries
The conditions to apply at external boundaries of the domain depend on whether the
ice adjacent to the boundary is temperate or cold. In some cases, this distinction may
be prescribed as part of the boundary condition (e.g. if the temperature is prescribed
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FIGURE 1. Temperate and cold domains, Ω+ and Ω−, respectively, separated by interior
boundaries Γ with normal n. Thick lines correspond to exterior boundaries.

to be below the melting point), whilst in others (e.g. if a given heat flux is supplied) it
needs to be determined as part of the problem through the imposition of the constraint
T 6 Tm at the boundary, and may change in time.

At cold exterior boundaries, a condition on temperature or temperature gradient
(or a relation between them) must be prescribed, in the usual way. Naturally, no
conditions are required for the moisture transport problem there.

At temperate exterior boundaries, the appropriate conditions again depend on
whether they are ‘inflow’ or ‘outflow’ boundaries, with (u − v) · n being positive or
negative respectively. Here the normal n points into the temperate region, and v is
the velocity of the boundary itself (see figure 1). In the case of an inflow boundary,
the porosity φ must be prescribed, as well as a condition on either the moisture flux
j · n or the compaction pressure pe for the moisture transport problem (2.34)–(2.35).
In the case of an outflow boundary, only a condition on j · n or pe is required.

For example, at the surface of a temperate glacier, the accumulation region
corresponds to an inflow boundary, and we may expect to prescribe the porosity
and the moisture flux j · n, possibly as the output of a model for the compacting
firn layer above. In the ablation region, where the surface corresponds to an outflow
boundary, the compaction pressure pe is likely to be zero, with both the pore pressure
and ice pressure being atmospheric. (There is in fact a possible complication that
arises here: the pore pressure pw cannot drop below atmospheric pressure or, in
isolation from the atmosphere, below the triple point pressure of water. This bound
may be attained near the glacier surface and lead to a region of partially saturated
temperate ice overlying saturated temperate ice, and hence the introduction of another
free boundary. The appropriate extension of our model to this case is likely to be
similar to an analogous situation in subglacial drainage (Schoof, Hewitt & Werder
2012), but we do not pursue this further here.)

At the base of a temperate glacier, where basal melting occurs, we have an outflow
boundary. A single boundary condition is required. The obvious choice is to equate
the englacial water pressure pw with subglacial water pressure. If we define effective
pressure at the bed N as normal stress minus subglacial water pressure, then in
dimensionless terms

pe =N + Pe τnn, (3.2)

where τnn is the dimensionless deviatoric normal stress at the bed (the difference
between pe and N arises because the definition of compaction pressure does not take
account of deviatoric stresses or the normal direction to the bed).

If basal freeze-on occurs (for example due to decompression and supercooling of
subglacial water), the boundary would be of inflow type, and we additionally expect
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to apply a condition on the porosity of the frozen-on ice. The porosity condition
would presumably depend on precisely how the frozen-on ice is formed; if frazil ice
is formed in the subglacial water and accumulates mechanically at the underside of
the glacier, a non-zero porosity may result, while direct freeze-on to the base of the
glacier may result in a zero porosity boundary condition. Again, we do not investigate
the physics involved further here.

4. Steady-state test cases
Next, we consider the solution of our polythermal ice model in a simple,

one-dimensional setting in steady state. Most of the examples we use should be
thought of as the modelling equivalent of a controlled experiment rather than an
attempt to reproduce realistic ice sheet conditions; one of the scenarios we consider
is the polythermal equivalent of the highly idealized temperature solution for an ice
divide due to Robin (1955). As explained in the introduction, we wish to illustrate
the generic behaviour of solutions to our model, and to test different solution methods
against each other.

We consider a parallel-sided slab of ice, with the z-axis oriented perpendicular to
the slab, and assume that temperature, porosity and compaction pressure are functions
of z only. The divergence-free velocity field u and dissipation rate a are assumed to
be prescribed. For most of the solutions below, we simply take u to be constant and
let u denote the z-component of u.

The dissipation rate a will generally be treated as constant, even though this is not
consistent with a constant velocity field. (A shearing term parallel to the sides of the
slab can always be added to generate a constant a while keeping the z-component u
unchanged, or other sources of heating could be appealed to.) The case of a position-
dependent dissipation rate a= a(z)> 0 could be handled just as easily by our solution
methods, but adds no significant insight. For simplicity, we also set Tm=0 and assume
the case of a constant dimensionless viscosity η= 1.

In steady state, all time derivatives as well as the migration velocity v of the cold–
temperate boundary vanish. The steady-state version of the polythermal ice problem
in § 2.5 can be written in one-dimensional form as

Pe u
dT
dz
− d2T

dz2
= a (4.1)

subject to T 6 0 for the cold subdomain Ω−, and

Pe u
dφ
dz
+ φpe = a, (4.2a)

Pe u
dφ
dz
+ d

dz

[
κφα

(
g+ δ dpe

dz

)]
= a, (4.2b)

subject to φ > 0 in the temperate subdomain Ω+, where g is the z-component of
gravity. In our solutions, we take z to be oriented upward, so g=−1.

We impose that the slab has one cold boundary and one temperate boundary, at
z = zc and z = zt, respectively, with a single temperate region Ω+ adjacent to zt,
and a single cold region Ω− adjacent to zc, separated by a cold–temperate boundary
point z = zct (see figure 2). We must distinguish between cases in which z = zct
is an inflow or an outflow boundary (see § 3). For an inflow boundary at z = zct
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FIGURE 2. (Colour online) Steady-state test problems considered, labelled with the
exterior boundary conditions, corresponding to the solutions shown in figure 3. Shading
corresponds to the temperate ice region, and the arrow indicates the direction of constant
ice motion. Gravity acts downwards.

(where sgn(u) = sgn(zt − zct) at z = zct), the cold–temperate boundary conditions
now state that temperature is at the melting point, while conductive heat transport,
moisture transport and porosity vanish at the boundary:

T =−dT
dz
= q= φ = 0 at z= zct, (4.3a)

where we define q to be the z-component of total moisture (or enthalpy) flux,

q= Pe uφ + κφα
(

g+ δ dpe

dz

)
. (4.3b)

Conversely, for an outflow boundary (sgn(u) = sgn(zct − zt)), we have one fewer
boundary condition than for the inflow case,

T = 0, −dT
dz
= q= Pe uφ at z= zct, (4.3c)

again stating that temperature is at the melting point, while conductive heat flux equals
the moisture-based enthalpy flux, and, in the form of the last equality, that the relative
moisture (or Darcy) flux vanishes: note from (4.3b) that q − Pe uφ is simply the z-
component of relative moisture flux j.

At the cold exterior boundary z= zc, we prescribe a temperature

T = T0, (4.4a)

where naturally T0 < 0. The necessary boundary conditions at the temperate exterior
boundary z = zt depend on whether this is an inflow or an outflow boundary. The
nature of the boundary at zt is simply the reverse of that at zct (we assume that u
does not change sign). Thus, an inflow boundary at z= zct corresponds to an outflow
boundary at z= zt, and we simply prescribe an effective pressure

pe =N0. (4.4b)
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Conversely, an outflow boundary at z= zct corresponds to an inflow boundary at z= zt,
which also requires a condition on porosity at zt; in that case, we impose

φ = φ0 (4.4c)

in addition to (4.4b). Having an additional boundary condition at z= zt accounts for
having one fewer at zct, as pointed out above.

The six boundary conditions specified (one at zc and either three or four at zct,
corresponding to one or two at zt, respectively) allow us to solve the second-order
problem (4.1) along with the coupled first/second-order system (4.2), while also
determining the free boundary position zct. As we show in the supplementary material,
there appears to be no problem in applying this counting argument despite the fact
that φ = 0 at the cold–temperate boundary for the inflow case, which makes (4.2b)
singular.

We solve the steady-state problem in three ways: first, we use a finite volume solver
for the time-dependent temperate ice problem (appendix A), running the solution to
a steady state where the latter exists. Secondly, we use a multiple shooting method
to solve the steady-state boundary value problem (appendix B). In addition to direct
numerical solution techniques, we also compute an asymptotic approximation to the
solution valid for a small compaction parameter δ. Omitting the pressure-gradient term
δd/dz(κφαdpe/dz) from (4.2b) leads to a simple first-order problem for φ,(

Pe u+ ακφα−1g
) dφ

dz
= a, (4.5)

which can be integrated from the relevant inflow boundary (either zt or zct) at which φ
is prescribed. The compaction pressure can then be computed a posteriori from (4.2a)
as

pe = ακφα−2ga
Pe u+ ακφα−1g

. (4.6)

Note that this is actually a special case of a more general hyperbolic problem we can
motivate by omitting the O(δ) pressure-gradient term from the definition of moisture
flux. From (2.43) and (2.45), this leads to

Pe
∂φ

∂t
+∇ · (Pe uφ + κφαg)= a. (4.7)

In reducing the problem from (4.2b) to (4.5), we have however omitted higher-order
derivatives in pe, which leads to difficulties in satisfying all the boundary conditions.
For instance, if we have a cold–temperate outflow boundary, we can legitimately use
(4.5) to find a leading-order solution for the boundary location zct though the first
equality in (4.3c)2, at leading order

−dT
dz

∣∣∣∣
z=zct

= q(zct)= Pe u(zct)φ(zct)+ κφ(zct)
αg. (4.8)

However, we will not generally be able to satisfy the last equality in (4.3c)2, stating
that the relative moisture flux q− Pe uφ should simultaneously vanish. To ensure the
latter, a boundary layer becomes necessary in which gradients in compaction pressure
cannot be neglected. There are different types of boundary layers at different types of
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boundaries (depending on whether they are cold–temperate or exterior boundaries, and
whether they are of inflow or outflow type). We describe them in brief in appendix D
and in greater detail in the supplementary material.

Unless explicitly stated otherwise, the asymptotic solutions we present below are
composite solutions of (4.5) and (4.6) combined with the relevant boundary layer
solutions (Holmes 1995). When comparing asymptotic solutions with numerical
solutions of the ‘full’ model, the latter were generally computed from the multiple
shooting method.

5. Results
5.1. Cold–temperate inflow and outflow boundaries

Generically, there are four different cases to consider: ice can flow up or down, and
at the same time it can flow from cold to temperate or temperate to cold. Some of
these combinations may not be widespread in ice sheets: for instance, cold ice moving
upward into a temperate region is likely to be an exotic situation. An example of each
of these four cases is illustrated in figure 3, where we plot the solution obtained from
the finite volume solver using dots, the shooting method solution as a solid line and
the asymptotic solution as a dashed line. Note that all three solution methods agree
well. The finite volume and shooting solutions are essentially identical, indicating that
the numerical methods work well in computing steady-state solutions. Despite a finite
value of δ= 1.25× 10−2 in each case, the asymptotic solution differs perceptibly only
for the case shown in panel (a). We show in § 5.5 that the difference between the
numerical and asymptotic solutions shrinks as δ is made smaller.

Ice flowing from the cold into the temperate region corresponds to an inflow
boundary, at which porosity φ and temperature gradient dT/dz both vanish, so
that the enthalpy content and flux are continuous (in figure 3b,c). This is the case
captured by the obstacle problem formulation of Zwinger et al. (2007). Conversely,
ice flowing from the temperate into the cold subdomain creates an outflow boundary
(figure 3a,d), at which a Stefan condition ensures continuity of a non-zero enthalpy
flux, while the enthalpy content is discontinuous: φ does not go to zero at the
cold–temperate boundary in that case. This case cannot be described by an obstacle
problem formulation, as the temperature gradient dT/dz also no longer vanishes
at the cold–temperate boundary. Other than the discontinuity in porosity at the
cold–temperate boundary for outflow cases, the other main difference between
cold–temperate inflow and outflow boundaries is the spike in effective pressure
near the cold–temperate boundary visible in the outflow cases in figure 3(a,d). The
need to satisfy a zero Darcy flux boundary condition, combined with a non-vanishing
porosity at the boundary, result in large compaction pressure gradients in outflow
cases, which can be explained through the boundary layer structure summarized in
appendix D. In order to show all solutions at the same scale, we have cut off part
of the compaction pressure plots in figure 3(a,d); note that pe remains finite in both
cases.

The main difference we see at this point between upward- and downward-moving
ice is in the porosity gradients in the ice and in the sign of the compaction pressure.
For downward-moving ice, advective and gravity-driven moisture transport reinforce
each other, and the same amount of moisture flux requires a smaller porosity than
when gravity opposes advection. This results in porosity growing more slowly away
from the cold–temperate inflow boundary when ice flow is down rather than up
(compare in figure 3b,c). The different rates of growth in porosity away from these
boundaries also require different compaction pressures. When gravity opposes upward
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FIGURE 3. Generic steady-state solutions. Each subplot labelled (a)–(e) shows φ (red)
and T (blue) on the left, pe (blue) on the right. z is plotted along the vertical. A solid
line is the shooting method solution, dots indicate the steady-state finite volume solution
(not all cell centre values are shown), a dashed line the asymptotic solution; these are
mostly indistinguishable. The arrow between the panels in each case indicates the ice flow
direction; no arrow in subplot (e) indicates that there is no advection across the slab. g
points down. Shading indicates the temperate subdomain. In each case δ = 1.25 × 10−2.
The remaining parameter values for each plot are given in table 2.

advection, compaction pressures are typically negative to ensure that porosities can
grow fast enough, while in cases where advection is in the downward direction,
positive compaction pressures ensure that porosity remains sufficiently small.

In addition to inflow and outflow cases, we have also plotted a solution for the
marginal case of no advection in the vertical (u= 0) in figure 3(e). This case, which
also shares many of the characteristics of the temperate ice behaviour for large
permeabilities κ (see § 5.2), is appropriate for a parallel-sided slab of ice flowing
in simple shear (the introductory text book example of the flow of an infinitely
long glacier). The mathematical details of this case are given in appendix C. At the
cold–temperate boundary, we have the same ‘obstacle problem’ boundary conditions
of zero conductive flux and temperature at the melting point as are appropriate to
the inflow case; in other words, the temperature problem and the determination of
the boundary location zct once more decouple from the problem of finding porosity
and compaction pressure. By contrast with the inflow case, however, porosity at the
cold–temperate boundary does not vanish, attaining a small but finite value (for small
δ), while compaction pressure is largest at the top of the temperate subdomain (while
still remaining finite) and decreases towards the bottom.

5.2. The role of relative moisture flux
Here we consider the effects of increasing the permeability parameter κ . We focus on
the case where velocity u and gravity g have the same orientation, so advective and
gravity-driven moisture flux combine to increase total transport.
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Figure zt zc u κ α T0 N0 φ0

3(a) 0 1 1 0.25 2.33 −0.5 1 0.2
3(b) 1 0 1 0.25 2.33 −0.1 0 n/a
3(c) 0 1 −1 1 2.33 −0.1 1 n/a
3(d) 1 0 −1 1 2.33 −0.5 0 0.2
3(e) 0 1 0 1 2.33 −0.1 1 n/a
4(a,b) 0 1 −1 cap 2.33 −0.1 1 n/a
4(c,d) 1 0 −1 cap 2.33 −0.5 0 0.2
5(a,b) 1 0 1 cap 2.33 −0.1 0 n/a
5(c,d) 0 1 −1 1 cap −0.1 1 n/a
6(a,b) 0 1 −1 5 2.33 −0.1 1 n/a
6(c) 0 1 1 0.25 2.33 −0.5 1 0.2
7 1.5× 10−5 1 −z 1 2.33 −0.1 1 0.2

TABLE 2. Parameter values used in the figures. In all cases, Pe = a = 1, g = −1. δ is
indicated in the figure captions. ‘cap’ also indicates that the relevant value is indicated
in the figure caption (typically because more than one value is used in the figure), n/a
indicates a value is not needed.

Figure 4(a,b) shows steady-state solutions computed for downward ice flow from
the cold subdomain into the temperate subdomain for different values of κ . The cold–
temperate boundary is then an inflow boundary at which temperature T as well as the
advective heat flux −Tz both vanish. As a result, the location of the cold–temperate
boundary is unaffected by changing permeability: the temperature problem decouples
from the porosity and compaction pressure problem.

In the temperate subdomain, however, changing the permeability κ does have
a substantial effect on porosity and compaction pressure. As the cold–temperate
boundary location does not depend on κ , the same amount of melt is produced in
each case, but increased permeability leads to lower porosities. The increased ability
of water to drain through the matrix, in addition to downward transport along with
the moving ice, allows the same amount of water to be transported at lower porosities.
Gravity-driven moisture flux through the ice matrix is the main way in which our
model departs from more widely used enthalpy-gradient methods, and this clearly
has the ability to reduce the amounts of moisture stored in temperate ice. Lower
porosities can only be maintained by faster compaction in the temperate ice matrix,
which explains why the compaction pressure increases with κ .

If we turn to the case of temperate ice being advected downwards into a cold
region (see figure 4c,d), similar observations apply: except in a boundary layer near
the cold–temperate boundary, porosity decreases and compaction pressure increases as
we increase κ . The boundary layer (see appendix D.2) behaves differently because
this is where moisture draining downwards becomes backed up due to the fact that
the relative moisture flux must vanish at the cold–temperate boundary. The notable
difference from the previous case is that the temperature and location of the cold–
temperate boundary are no longer decoupled in this situation. The total moisture flux
q differs between the cases computed with different values of κ , and as a result, the
cold–temperate boundary location also differs: larger permeability κ leads to more
moisture draining down from the upper boundary, which reduces the size of the cold
subdomain and increases the temperature gradients there.
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FIGURE 4. The effect of increasing κ . Same basic plotting scheme as in figure 3(c,d),
here showing only the shooting method solution. Asymptotic solutions are omitted to make
the plot less crowded. The large vertical arrow indicates ice flow direction. (a,b) Cold ice
overlying temperate ice. Solution for κ = 1 shown in orange/turquoise, κ = 5 in red/blue
and κ = 25 in maroon/dark blue. Here δ= 1.25× 10−2. Other parameter values are given
in table 2. Panels (c,d) show analogous solutions (same colour scheme) for cold ice
underlying warm ice. The horizontal black lines show z= zct for different κ , the shading
is for κ = 25.

5.3. Upwards advection and the breakdown of steady-state solutions
A different situation altogether arises when ice moves upwards (figure 3(a,b), in which
case downward gravity-driven drainage through the matrix opposes upward advective
transport. An increase in the ice permeability coefficient κ can lead to the breakdown
of the steady-state solution. In the case of temperate ice lying above cold ice, the ice
enters the temperate subdomain with zero porosity. Upward transport has to increase
as we go up from the boundary to account for the moisture that is being produced. At
small porosities, that transport has to occur predominantly through advection, leading
to an increase in porosity (recall that we assume that α > 2). As porosity increases,
however, the tendency for moisture to drain downward also increases, making it harder
to evacuate the moisture being produced.

In fact, if we ignore the role of pressure gradients, then there is a maximum
attainable upward moisture flux. A steady state cannot be reached if total moisture
production in the domain exceeds this maximum flux: water starts to accumulate
inside the domain instead. This is more likely to happen if κ is larger, which
facilitates downward drainage and reduces the maximum flux.

Figure 5(a,b) shows two examples of this situation for values of κ small enough
that the steady-state solution still exists. For the larger value κ = 0.52, the steady
state is very close to breakdown, and for larger values we find there is no steady
state. In fact if we were to set δ to zero with κ = 0.52 there would be no steady
solution in that case either; the maximum flux mentioned above is achieved just
beneath the upper boundary, but the pressure gradients in a boundary layer enable
moisture transport over the remaining short distance to the exterior boundary (this is
only possible if the maximum flux is reached within an O(δ2/5) distance from the
boundary, see appendix D.1).
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FIGURE 5. Same basic plotting scheme as in figure 3, showing: (a,b) solutions for upward
ice advection with values of κ close to the breakdown of steady-state solutions; and
(c,d) solutions for downward ice advection showing the effect of changing α at the
inflow boundary. The shooting method and composite asymptotic solutions are shown
(they are essentially indistinguishable). In (a,b), solutions are for κ = 0.4 (red/blue), κ =
0.52 (orange/turquoise), while the black curve shows the asymptotic (‘outer’) solution
that solves (4.5) with no boundary layers for κ = 0.52. Here δ = 1.25 × 10−4. In (c,d),
solutions are for α = 2 (orange/turquoise), 2.33 (light red/light blue), 3 (red/blue) and 4
(maroon/dark blue) and δ = 1.25× 10−3. See table 2 for the remaining parameters.

This phenomenon is easy to understand mathematically. Take (4.5) with u constant.
In steady state, the moisture flux must be q = a(z − zct), related to φ through q =
Pe uφ + κgφα (in the limit δ→ 0). Equating these two expressions allows us to solve
for φ, leading to the solid black line in figure 5(a) (the dashed black line also solves
Pe uφ + κφαg = a(z − zct), but does not satisfy φ(zct) = 0). If u is positive and g
negative, then q(φ) has a maximum of

qmax = (α − 1)
α

[
(Pe u)α

−ακg

]1/(α−1)

(5.1)

reached at φ = [Pe u/(−ακg)]1/(α−1). If the maximum flux a(zt − zct) demanded by
mass conservation is larger than qmax, then the simplified model does not permit a
steady state. Clearly this happens if κ is made too large since qmax decreases with
κ . As shown in figure 5(a,b), it is possible to find steady-state solutions for values
of κ slightly larger than this argument would suggest, but not for substantially larger
ones. For values of κ larger than approximately 0.53 and the remaining parameters as
used in figure 5, a wave, or multiple waves, in porosity and compaction pressure form
first near the top of the domain and slowly move downwards, growing as they move
downwards (see Spiegelman (1993) for a similar phenomenon in the theory of melt
extraction from mantle rock). This rather complicated phenomenon will be explored
in more detail in a separate paper.

We have illustrated the breakdown mechanism for cold ice moving upwards into
temperate ice. In the case of ice moving upward from a temperate exterior domain zt
that lies below the cold domain, a similar loss of steady state can occur, but since
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FIGURE 6. Comparison of full and asymptotic solutions. Same basic plotting scheme as
in earlier figures, showing the shooting method (solid) and composite asymptotic solutions
(dashed). The ‘outer’ solution to (4.5) with no boundary layers is shown in black. (a,b):
solution for downward-moving ice with δ= 1.25× 10−2 (turquoise/orange) and δ= 1.25×
10−4 (blue/red). Other parameter values are given in table 2. (c,d) Show corresponding
solutions for upward-moving ice, same colour scheme. Note the obvious discrepancies
between asymptotic and full solutions at δ = 1.25 × 10−2, while they are practically
indistinguishable for the smaller value. The discrepancies mostly manifest themselves in
pe rather than φ.

solutions then depend on precisely what boundary condition φ0 is specified at the
lower boundary we avoid this additional complication here.

5.4. Behaviour near cold–temperate inflow boundaries: dependence of permeability
on porosity

A limitation of our model is that we do not have much information about the
permeability of temperate ice. This affects not only our ability to estimate κ , but also
the dependence of permeability on porosity, parameterized here through a power law
with exponent α. A choice of α = 2 arises if flow through temperate ice is limited
by veins (triple grain junctions) while most of the moisture is stored at the nodes
where multiple veins meet (Nye & Frank 1973), while α = 3 can be seen as the
natural small porosity limit of the Carman–Kozeny relationship (Bear & Bachmat
1990). The choice of α can have a significant effect on our solutions, especially the
compaction pressure distribution. This is particularly pronounced at inflow boundaries,
where the elliptic problem (3.1) for pe becomes singular. In figure 5(c,d), we show
solutions with a cold–temperate inflow boundary, keeping all parameter values but
α constant (note that comparing values of κ for different exponents α is however
meaningless).

Qualitatively, the main difference we find is that compaction pressure near the
inflow boundary increases with decreasing α. For α > 3, compaction pressures
near the inflow boundary increase continuously from zero, whereas for smaller
values of α, finite compaction pressures can occur at the boundary (we have limited
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FIGURE 7. Solution with a non-constant velocity (5.2). Same basic plotting scheme as
before, showing the finite volume (solid circles), shooting method (solid) and composite
asymptotic solutions (dashed). δ = 1.25 × 10−3, and other parameter values are given in
table 2. (a) T in blue, φ in red and q in green. (In the earlier solutions with constant
velocity u, the graph of q is simply a straight line, and therefore omitted.) (b) pe in blue.
(a1) and (b1) are enlargements of (a) and (b) near the bottom of the domain, showing
the narrow boundary layers there. Panel (c) shows corresponding streamlines for ice flow
(solid black) and moisture flow (dashed blue) in the two spatial dimensions.

our computations to α > 2, for which compaction pressure remains finite near the
inflow boundary). A detailed analysis of the near-boundary behaviour is given in the
supplementary material.

5.5. Comparison with asymptotic solutions

Figures 3 and 5 display the asymptotic solution along with the direct numerical
solutions for relatively small values of the compaction parameter δ. Here we
investigate more systematically how well the asymptotic solution agrees with the
direct numerical solution as we alter δ, and describe the effect this has on the
boundary layers that form in the temperate region. We focus on two cases, both with
cold ice overlying temperate ice (as is most realistic for glaciers and ice sheets).

Figure 6 shows a solution for downward-moving ice in (a,b) and for the upward-
moving case in (c,d). In each, solutions are plotted for δ= 1.25× 10−2 and δ= 1.25×
10−4. Dashed coloured lines show the composite asymptotic solutions (computed from
(4.5) and the appropriate boundary layer models describing the behaviour near zt and
zct), and solid lines show steady states calculated from the shooting method. The black
line (mostly obscured behind the full δ = 1.25 × 10−4 solution) is the asymptotic
solution without any boundary layers (that is, the ‘outer’ solution that was also plotted
in figure 5).

In both cases, the asymptotic solution is indistinguishable from the shooting method
solution at δ = 1.25 × 10−4, but distinct at δ = 1.25 × 10−2, showing the expected
convergence in the limit of small δ. The error is generally smaller for φ than for pe.
For δ = 1.25× 10−2, the latter error is considerably larger for the case of downward-
flowing ice in figure 3(b) than for upward-flowing ice in figure 3(d). This is partially
the result of the calculation for downward-flowing ice having been done with a larger
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value of κ which in general leads to worse agreement between the asymptotic solution
and the full solution for fixed δ. This would have been quite apparent in figure 4 had
we included the asymptotic solutions there.

One a technical note, it appears that for δ= 1.25× 10−2, the outer solution (black)
actually agrees better with the full solution (blue) than the dashed composite solution
in figure 3(b). This results from the boundary layer solution near zct (appendix D.3),
which gives more accurate results very close to the boundary but decays too slowly to
give good composite solutions for moderate δ; omitting this boundary layer generally
gives closer agreement except near zct, where the fractional error becomes large if
the boundary layer is omitted. Note that the boundary layer is only relevant when
2<α < 3, which applies for the solution shown in figure 6.

Quite generally, the composite solution also becomes more similar to the outer
solution in the limit of small δ. This happens because the boundary layers shrink
in extent: most of the boundary layers are of thickness O(δ1/2), the main exception
being the case of a cold–temperate inflow boundary as described in appendix D.
The boundary layers do, however have quite a distinct character, most notably in
how compaction pressure behaves near the boundaries. Near the exterior boundary
z= zt= 0, there is a boundary layer in which pe departs by an O(1) fraction from the
outer solution in order to match the prescribed boundary condition (appendix D.1),
while the boundary layer near the cold–temperate boundary has much larger O(δ−1/2)
excursions in compaction pressure if the boundary is an outflow boundary (to ensure
the zero Darcy flux condition is met, see appendix D.2), and a much smaller
correction if it is an inflow boundary (see appendix D.3), which in any case is
required only when 2< α < 3 (where the correction in pe is of O(δ(α−2)/(3−α)), while
pe in the outer solution goes to zero near the boundary). We remind the reader
that the boundary layer structure is also discussed in much greater detail in the
supplementary material.

5.6. An ice divide solution
Here we present an extension of the temperature solution for an idealized ice divide
(the central ridge that separates flow towards different parts of the ice sheet margin)
due to Robin (1955) to the polythermal case. Instead of using a constant velocity u,
we assume the velocity field u to be of the form

u= (x, 0,−z), (5.2)

giving a linear change in velocity across the slab with depth while ensuring that ∇ ·
u = 0. With the domain lying above z > 0, (5.2) replicates the idealized ice divide
velocity field in Robin (1955).

We still use u = −z to denote z-component of the velocity field in this case. As
before, it is perfectly consistent to assume that φ, pe and q depend only on z. Because
we never previously assumed that u was a constant (the only constraints actually being
that u depends on z only, and does not change sign in the domain), the entire steady-
state model of § 4, including the simplified hyperbolic model (4.5), applies without
change to the new velocity field (5.2). This is true so long as we do not allow the
point z= 0 to lie inside the temperate subdomain Ω+, so that u cannot change sign
and inflow boundaries at zct still correspond to outflow boundaries at zt, and vice versa.
(In fact, when solving for the steady states using the shooting method of appendix B,
we do not allow z = 0 to lie on the boundary of the domain either, to prevent the
advection problem (4.2a) becoming singular with u= 0, and use a small but finite zt.)
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Figure 7 shows an example of a solution. One crucial difference from the previous
examples is that the underlying velocity field is now intrinsically two-dimensional,
allowing moisture transport in the transverse direction. Unlike the examples above, this
also implies that the z-component of total moisture flux q need not depend linearly on
z, as part of the moisture produced can be evacuated through sideways advection rather
than through vertical moisture transport. Figure 7 therefore shows the now non-trivial
solution for q (taken to be the total vertical enthalpy transport in both subdomains, i.e.
q= Pe uT − dT/dz in the cold domain) plotted along with φ and pe.

Near the base of the ice, vertical advection becomes very small, and lateral
advection reduces the (negative) size of the flux q: sideways transport starts to play
a more significant role as the vertical velocity field u becomes small. The other
main qualitative difference with previous solutions lies in the boundary layer near the
temperate exterior boundary zt: these turn out to be much narrower, occupying only a
small region (of thickness O(δ)) near the base of the ice, in which effective pressure
and porosity change rapidly (see the insets in figure 7b).

6. Discussion and conclusions

We have developed a model for polythermal ice incorporating gravity- and
pressure-gradient-driven moisture transport through a viscously compacting ice matrix.
Our model is essentially a stripped-back form of the theory suggested by Fowler
(1984), although his boundary conditions are subtly different from ours. The main
advantage of our formulation is that it is directly applicable to most ice flow models,
in that it retains the incompressibility of ice and allows a standard Stokes flow
solver (or its equivalent for ice flow models using a reduced version of the Stokes
equations) to be used to find ice velocity, while still using Darcy’s law to account
for the transport of moisture relative to the ice matrix. This stands in contrast with
other approaches that use a diffusive constitutive relation for relative moisture flux,
or allow no such flux at all. In particular, the fact that our model allows gravity to
remove moisture from the temperate subdomain may prevent the excessive build-up
of porosity.

We have used a finite volume discretization to solve the model, using an enthalpy
method to capture the free boundary between cold and temperate ice (appendix A)
without having to resort to the diffusive flux of an enthalpy gradient method. We
have tested this solution method against a multiple shooting method that allows direct
numerical solution of the steady-state equations as a one-dimensional free-boundary
problem. The results obtained from the two methods are virtually indistinguishable,
giving us confidence in the performance of both.

The numerical solutions have allowed us to explore the relatively diverse
phenomenology of solutions. The most relevant difference between the solutions
we have shown is intrinsic to the basic model, namely the difference between
boundaries where cold ice flows through the cold–temperate boundary into the
temperate domain (‘inflow’ problems) or vice versa (‘outflow’ problems). The effective
boundary conditions at the cold–temperate boundary change depending on whether
we have inflow or outflow at the cold–temperate boundary: at an inflow boundary,
conductive heat flux and porosity vanish (so the enthalpy is continuous), while at an
outflow boundary, porosity can instead be finite and a Stefan condition determines
the non-zero conductive heat flux in terms of porosity and advection velocity.

To be more precise, both boundary conditions ultimately derive from the same
Stefan condition, but the need to satisfy inequality constraints on T and φ near an
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inflow boundary leads to the conclusion that conductive heat flux and porosity both
vanish at inflow boundaries, while the same Stefan condition permits discontinuities
in porosity at outflow boundaries. The ‘obstacle problem’ formulation implicit in
Zwinger et al. (2007) and Suckale et al. (2014), which requires zero conductive
heat flux at the cold–temperate boundary, is therefore appropriate if there are only
inflow boundaries, or (in an approximate way) if porosities are minimized at outflow
boundaries, for instance by gravity-driven drainage, but not otherwise.

The other main difference between our sample solutions, apart from that between
inflow and outflow solutions, lies in the direction of ice flow relative to gravity, which
determines whether ice advection reinforces or opposes gravity-driven drainage. In
the case of upward advection, larger permeabilities can lead to the breakdown of
steady states as water becomes trapped in the domain through gravity-driven drainage,
while larger permeabilities in the case of downward advection simply lead to smaller
porosities and higher compaction pressures.

Different choices of power-law exponent α in the definition of permeability lead
to different distributions of compaction pressure, especially near cold–temperate
inflow boundaries. There is at present little experimental data on the permeability of
temperate ice and its dependence on porosity, which is an obvious target for future
research.

One of the practically useful results of this paper has also been that we have
generally found good agreement between the full model and an asymptotic solution
based on the limit of δ� 1, which leads to the simpler hyperbolic model (4.7). This
allows us potentially to reconcile our model with the established enthalpy gradient
models that are already in use in ice sheet simulations.

The standard enthalpy-gradient method (Aschwanden et al. 2012) is most applicable
to near-impermeable temperate ice, in which case it provides a diffusive regularization
of the purely advective transport of moisture that would result in our model from
setting κ = 0. The introduction of the diffusive term j=−ν∇φ with small but positive
ν leads to porosity (and therefore enthalpy) going to zero at the cold–temperate
boundary even where this is an outflow boundary in our parlance, while there is
a discontinuity at such a boundary for purely advective transport. However, the
discrepancy between the two models is then limited to a diffusive boundary layer
near outflow boundaries of thickness O(ν), and using the diffusive regularization
introduces a comparable O(ν) error into the location of the free boundary and the
computation of moisture content.

The standard enthalpy-gradient method however does not account for physically
realistic drainage of moisture through the matrix with a non-zero permeability κ > 0,
which may be key to preventing undue build-up of moisture content. Our asymptotic
model, (4.7), suggests a plausible extension of the enthalpy-gradient method that
incorporates at least gravity-driven drainage. In particular, we can define enthalpy as
in (2.49) through h = T for T < Tm and h = Tm + φ for T = Tm, and formulate the
following enthalpy-gradient model,

Pe
(
∂h
∂t
+ u · ∇h

)
+∇ ·Q= a, Q=

{
−∇h for h 6 Tm

κg(h− Tm)
α − ν∇h for h> Tm,

(6.1)

which should be understood in its ‘weak’ form (given its diffusive nature, meaning
that both h and the normal component of Q will be continuous across the
cold–temperate boundary). The model (6.1) is a diffusively regularized version of
the asymptotic model for enthalpy transport (4.7).
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The difference between this version and our full polythermal ice model, as described
in § 2, lies in replacing the pressure-gradient-driven flux term δκφα∇pe by −ν∇h in
the temperate subdomain, which inevitably will lead to discrepancies near the cold–
temperate boundary. The relevant boundary layers will differ from each other, but
the hyperbolic ‘outer’ problems away from such boundary layers in general have the
same solution. The resulting errors will generally be localized near the boundaries
of the temperate subdomain, and both models should in general predict the location
of the cold–temperate boundary to within a small (O(ν, δ)) error of each other. The
applicability of (6.1) is therefore limited to cases where such small errors in locating
the cold–temperate boundary are acceptable.

A diffusive model such as (6.1) may in fact be appropriate in a different physical
limit to the one considered so far. Recall that we excluded surface energy effects
from consideration in (2.15), and outlined a generalization in (2.16), which we did not
however pursue further. It is conceivable that, rather than having a balance between
advection, melting and closure of void space as in (2.15), there could be a leading-
order balance between compaction pressure pe and the surface energy term ps(φ) in
(2.16), so pe = ps(φ) and the relative moisture flux becomes Q = κφα(g + δ∇ps(φ)),
which is of the same form as (6.1) if we put ν =−δκφαdps/dφ > 0.

There are some further subtleties that may need careful handling: for instance, the
diffusive model (6.1) is not able to handle the breakdown of solutions described in
§ 5.3 or, more generally, problems in which (4.7) predicts the formation of shocks:
it can be shown that the diffusively smoothed version of (4.7) that arises from (6.1)
behaves very differently in that case from our full model in § 2. These situations,
which we will study in more detail elsewhere, are however unlikely to be widespread
in ice sheets. Where they are absent, (6.1) provides a straightforward mechanism for
adapting existing enthalpy-gradient models to incorporate some of the physics studied
in this paper.

In closing, we emphasize the need for further experimental work to complement
model development. For instance, our work has assumed a permeability of the
form k0φ

α, where neither k0 nor α are particularly well constrained by measurements
(although α= 2 is a widely used limit for the case where moisture is mostly stored at
the nodes of a network of veins, with the veins themselves controlling permeability).
The need for experimental data is likely to become more acute if we include the
effect of surface energy on compaction as described in equation (2.16): we would
need a constitutive relation for the surface energy term ps(φ). These are clearly
important questions for future research.
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Appendix A. Finite volume method
The thermal and moisture equations can be written succinctly as

Pe
(
∂h
∂t
+ u · ∇h

)
=∇2T + a− φpe

η
, on Ω, (A 1)

∇ · j≡∇ · [κφα (g+ δ∇pe)
]= φpe

η
, on Ω+, (A 2)

where the enthalpy is related to temperature and porosity by

h= T + φ and

{
T = h, φ = 0, on Ω−,
T = Tm, φ = h− Tm, on Ω+,

(A 3a,b)

and where Ω+ is defined by where h> Tm, and Ω− where h 6 Tm.
The first equation (A 1) applies throughout the entire domain, provided we formally

extend the definition of pe to be finite in the cold domain (the final term corresponding
to the moisture divergence ∇ · j is only effective when φ>0). Provided this equation is
solved with a conservative numerical scheme, the Stefan condition Peφ+(v− u) · n=
−∇T− · n is automatically satisfied at the free boundaries. Boundary conditions are
applied for T on the cold exterior boundaries ∂Ω−, and for φ on the inflow portions of
the temperate boundaries ∂Ω+. Equation (A 2) applies only in the temperate ice, with
condition j · n= 0 on Γ and with a condition for j= κφα (g+ δ∇pe) or pe on ∂Ω+.

Our procedure to solve these equations uses a finite volume discretization and a
simple operator splitting method. Temperature, porosity and pressure are discretized
on a regular grid, while ice velocity and moisture flux j are defined on a staggered
grid. Using a harmonic average to define the permeability on the staggered grid
means that the condition j · n= 0 is naturally applied at any cold–temperate boundary.
The discretized domain is partitioned into Ω+ and Ω− explicitly at each time step
according to the current value of h. The elliptic equation (A 2) is solved on Ω+ to
determine pe given the current φ, and the energy equation (A 1) is then advanced for
h with a combination of implicit and explicit discretization. Specifically, the left-hand
side is treated with an upwind discretization, the temperature on the right-hand side
is set equal to h and discretized implicitly on the current Ω−, but set equal to Tm on
Ω+, and the final compaction term is discretized explicitly. The new value of h then
defines the new T and φ as well as the new domain partition.

Appendix B. The shooting method for the temperate ice problem
The steady-state heat equation (4.1) is straightforward to solve through the use of

integrating factors. For constant u, we have

T(z)= az
Pe u
+ A exp(Pe uz)+ B, (B 1)

while for the linear velocity profile (5.2), we obtain a more complicated formula in
terms of Dawson’s integrals (see supplementary material). In both cases, T(z) can be
stated in closed form, with two constants of integration A and B. One constraint on A
and B arises from the Dirichlet condition (4.4a), while further constraints arise from
the coupling between the temperate ice problem with the solution of the heat equation
at z= zct.
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A closed form solution of the temperate ice problem (4.2) is not possible, but we
can render it in a form suitable for a shooting method approach. Straightforward
manipulations allow the one-dimensional problem (4.2) for temperate ice to be
reformulated as a first-order system

dφ
dz
= a− φpe

Pe u
, (B 2a)

dpe

dz
= δ−1

(
q
κφα
− Pe u
κφα−1

− g
)
, (B 2b)

dq
dz
= a+ Peφ

du
dz
. (B 2c)

We apply a multiple shooting method, integrating (B 2) as an initial value problem
across N partitions of the temperate domain. This turns the solution into a root-finding
problem, as we need to determine the correct ‘initial’ conditions at the starting point
of each partition, such that the solution is continuous at each partition endpoint that is
interior to the temperate domain and such that the boundary conditions at zt and zct are
satisfied. The root-finding problem, which we solve using Newton’s method, involves
not only finding the ‘initial’ conditions for the system (B 2), but also the constants of
integration A and B and the cold–temperate boundary location zct.

A difficulty arises in solving the system (B 2) near a cold–temperate inflow
boundary at z = zct. In that case φ vanishes at the boundary and (B 2b) becomes
singular. We amend the shooting method above by solving a transformed system
of equations in the partition of the domain closest to zct in that case, using the
transformed variables

z− zct = φνχ, Ψ = φβN, ω= [q− a(z− zct)]/φ, dζ
dz
= φ−γ , (B 3a−d)

with for 2 6 α 6 3, we use ν = γ = 1, β = α − 2 and ν = 1, β = γ = (α − 1)/2 for
α> 3. This transforms the problem of integrating up to the boundary at z= zct into the
problem of finding an orbit into a fixed point of a dynamical system as sgn(u(zct))×
ζ→−∞. For details on the transformation, and the shooting method in general, see
the supplementary material.

Appendix C. Temperate ice without advection
With no advection in the z-direction, (4.2a) degenerates into the algebraic relation

φ = a/pe and (4.2b) becomes

dq
dz
= a, q= κ

(
a
pe

)α (
g+ δ dpe

dz

)
. (C 1)

At the cold–temperate boundary, we now have neither an inflow nor an outflow
boundary, but the combination of a vanishing Darcy flux and the Stefan condition in
steady state require inflow-type boundary conditions on flux and temperature (but not
porosity):

T =−dT
dz
= q= 0. (C 2)

The boundary conditions on T once again take the form appropriate for an obstacle
problem, and finding the free boundary zct decouples from the problem of determining
porosity and compaction pressure.
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The zero Darcy flux condition allows us to integrate (C 1) to find q= a(z− zct), and
a first-order problem for pe

δ
dpe

dz
= (z− zct)pαe

κaα−1
− g, (C 3)

which must be integrated from the exterior boundary, at which pe=N0. An asymptotic
outer solution for small δ can again be found, this time in closed form, by setting the
left-hand side to zero:

pe =
(

gκaα−1

z− zct

)1/α

. (C 4)

With g < 0, this only has a real solution if the temperate domain lies below zct:
in the absence of advection, a steady state requires water to be able to drain
downwards under gravity out of the domain. This is an extreme example of the
solution breakdown discussed in § 5.3: with no advection, qmax is zero and for small
δ, there can be no steady-state solutions in which temperate ice overlies cold ice.

We elaborate on the relevant boundary layers in the asymptotic solution near zt and
zct in appendix D.

Appendix D. Asymptotic solutions
The ‘outer’ part of the asymptotic solution can be found by integrating (4.5) from

whichever end of the temperate subdomain has a porosity condition imposed. This
is zct for an inflow problem, and zt otherwise. Where zct is an outflow boundary,
its location is determined by finding q from the outer solution and equating it to
−dT/dz at zct. A range of different boundary layers is necessary to satisfy the
remaining boundary conditions. We simply state the relevant boundary layers below,
and give a more expansive derivation in the supplementary material.

D.1. Exterior boundary

Near zt, let n̂= (z− zt)/δ
1/2, p̂e(n̂)= pe(z), φ̂(n̂)= φ(z). Then φ̂ ∼ φ(zt), and

p̂e = pe(zt)+ (N0 − pe(zt)) exp
(−λ|n̂|) , where λ=

√
Pe u(zt)+ ακφ(zt)α−1g

Pe u(zt)κφ(zt)α
,

(D 1)

where pe(zt) and φ(zt) are the outer solutions that satisfy (4.5) and (4.6) This works
well (λ must be real, which requires sgn[u(zt)] = sgn[Pe u(zt)+ ακgφ(zt)

α−1]) unless
u(zct) or Pe u(zt)+ ακφ(zt)

α−1g are small in the outer solution.
For u(zt)∼O(δ), we need to define instead ń= (z− zt)/δ, φ́(ń)=φ(z), ṕe(ń)= pe(z).

Putting ú= u(zt)/δ, úz = du/dz, with ú and úz both of O(1). Then

dφ́
dń
= a− φ́ṕe

Pe (ú+ úzń)
,

dṕe

dń
= q́

κφ́α
− g, (D 2a,b)

where q́ = κφ(zt)
αg is the moisture flux at the boundary in the outer solution, and,

assuming an outflow boundary at zt, ṕe = N0 at ń = 0 and φ́ → φ(zt) as ń→∞.
This alternative boundary layer is needed to deal with the Robin (1955)-type velocity
field (5.2).
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Conversely, if Pe u + ακφα−1g = O(δ1/5) near the boundary or the outer solution
breaks down (Pe u + ακφα−1g = 0 inside the domain, with φ computed from (4.5))
within a distance O(δ2/5) of the boundary, the following alternative boundary layer
model is needed: identify a point zf such that Pe u(zf )+ ακφ(zf )

α−1g= 0, extending u
and therefore (4.5) smoothly past the domain boundary if needed. Put ù = u(zf ),
φc = φ(zf ), and define ǹ = (z − zt)/δ

2/5, φ̀(ǹ) = φ(z), p̀e(ǹ) = δ1/5pe(z). Then
φ̀ = φc + δ1/5φ(1), and

1
2
κgα(α − 1)φα−2

c φ̀(1)
2 + κφαc

dp̀e

dǹ
= a(ǹ− ǹ0), (D 3)

Pe ù
dφ̀(1)

dǹ
+ φcp̀e = 0, (D 4)

where ǹ0 = (zf − zt)/δ
2/5 is O(1). p̀e → 0 as sgn(zt − zct) × ǹ→∞ and p̀e = 0 at

ǹ= 0 (though in practice we apply p̀e= δ1/5N0 to get a more accurate solution). This
boundary layer model applies only if zt is an outflow boundary. It corresponds to the
near breakdown solution in figure 5(a,b).

For the case of no advection in (C 3) with outer solution (C 4), the boundary layer
at the exterior boundary is obtained by defining ň= (z− zt)/δ, p̌e(ň)= pe(z), so that

dp̌e

dň
= (zt − zct)p̌αe

κaα−1
− g. (D 5)

subject to p̌e(0)=N0.

D.2. Cold–temperate outflow boundaries

Near cold–temperate outflow boundaries, let ñ = (z − zct)/δ
1/2, p̃e(ñ) = δ1/2pe(z),

φ̃(ñ) = φ(z), and ũ = u(zct), q̃ = Pe ũφ(zct) + κφ(zct)
αg, where φ(zct) is the outer

solution. Then

dφ̃
dñ
=− p̃eφ̃

Pe ũ
,

dp̃e

dñ
= q̃

κφ̃α
− Pe ũ

κφ̃α−1
− g (D 6a,b)

with (φ̃, p̃e)→ (φ(zct), 0) as sgn(zt − zct) × ñ→∞, and, φ̃ = q̃/(Pe u) at ñ = 0. An
orbit that connects the fixed point at (φ(zct), 0) to the line φ̃= q̃/(Pe u) in the (φ̃, p̃e)-
phase plane requires that sgn[ũ] = sgn[Pe ũ+ ακφ(zct)

αg], which is similar to the sign
constraint required for the exponent λ in the previous § D.1 to be real. We do not
explore the boundary layer structure necessary when Pe u(zct)+ ακφ(zct)

α−1g is small
(see appendix D.1 above).

D.3. Cold–temperate inflow boundaries
Provided that we require α > 2, a boundary layer is required only for 2 < α < 3.
Let n̆ = δ−1/(3−α)(z − zct), φ̆(n̆) = δ−1/(3−α)φ(z), and p̆e(n̆) = δ(α−2)/(3−α)pe(z). Then
φ̆ = a/(Pe ũ)n̆ and p̆e satisfies

∂

∂ n̆

[
κ
( a

Pe ũ
n̆
)α ∂ p̆e

∂ n̆

]
− a

Peũ
n̆p̆e =−αaκg

Pe ũ

(
an̆

Pe ũ

)α−1

, (D 7)
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with

p̆e ∼ αaκg
Pe ũ

(
an̆

Pe ũ

)α−2

(D 8)

as sgn(zt − zct)× n̆→∞, and φ̆α(g+ dp̆e/dn̆)→ 0 as n̆→ 0.

D.4. Cold–temperate boundary with no advection
With no advection in (C 3) and with the outer solution (C 4), a boundary layer is
necessary at the cold–temperate boundary to prevent the compaction pressure from
becoming infinite. Let n̈= δ−α/(α+1)(z− zct), p̈e(n̈)= δ1/(α+1)pe(z); then

dp̈e

dn̈
= n̈p̈αe
κaα−1

− g. (D 9)

subject to p̈e ∼ (κgaα−1/n̈)1/α as sgn(zt − zct)× n̈→∞.
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